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Abstract:  This paper deals with the analytic derivation of thermodynamic properties of solids from shock-wave 

experiments in the range of pressures and temperatures, attained by detonation of chemical explosives. First, we derive 
the complete equation of state (EOS). In principle, all the thermodynamic properties of a system can be predicted once 
precise knowledge of the complete EOS becomes known. But the single Hugoniot curve determined from shock-wave 
experiments does not provide enough thermodynamic information to specify an EOS. The assumptions which, along with 
shock-wave data, are used in this work to determine a complete EOS are the Gruneisen assumption (1), the volume 
dependence of the Gruneisen parameter (2), and the Debye model for the specific heats (3). Consequently, the 
thermodynamic functions of the system under consideration are expressed as a superposition of a cold (0 K) term 
corresponding to the cold compressed state, and a second one, corresponding to the thermal vibrations of atoms in the 
crystal lattice about their mean positions. The cold isotherm was derived in a previous paper, also presented here. In the 
present work we focus on the Debye model of a solid and the insertion of pressure dependence of the thermodynamic 
properties into it using Grüneisen's assumption. The results are combined to obtain a complete EOS for a solid. The 
thermal and the caloric EOS are also derived.  

 
I. Introduction 
  
I. 1. Context 
  

Equations of state (EOS) of matter, obtained both theoretically and experimentally are of immense 
current importance in the basic and the applied sciences. In principle, all the thermodynamic properties of a 
system may be predicted, once precise knowledge of the complete EOS becomes known. Unfortunately, this 
is very rarely the case. On surveying the literature we find that a plethora of expressions are being used to 
represent pressure-volume data of solids and liquids. Further, pressure-volume-temperature ( TVP −− ) 
data for these substances are also represented through the temperature dependence of the parameters 
involved in representing VP −  data. Although some of the equations have only a partial theoretical basis 
even then such empirical relations are of much value for smoothing, interpolation, and extrapolation of 
pressure-volume data and also in determining the values of isothermal bulk modulus or isothermal 
compressibility and their first or higher derivatives with respect to pressure for the solid or liquid concerned. 

With the advancement of high pressure physics extensive experimental results on pressure-volume 
data have been obtained. Shock-wave experiments, aimed at EOS investigations, render it possible to 
extend the range of pressure-volume data beyond the region that can be reached with conventional static 
pressure experiments and to use much bigger specimens of the investigated material. All this brings to the 
forefront the problem of the complete EOS of matter at high pressures and temperatures. 

 
I. 2. Objectives 
  

The range of pressures and temperatures, considered in the present work is the one attained by 
detonation of chemical explosives in contact with the specimen or by explosively accelerated flyer plate 
methods. It does not extend beyond 10  and 10  [1]. The behavior of a solid within this range of 
pressures and temperatures is determined by the thermal lattice vibrations. That is why it is often called  the 
phonon region. In addition to being easily accessible experimentally, it covers a wide variety of processes 
and phenomena of interest to science and technology. Therefore, we shall aim our considerations at the 
phonon region and seek an EOS valid in it. 

K4 GPa2

A systematic theoretical calculation of an EOS in the phonon region on the basis of quantum 
mechanics of many--particle systems is very difficult because of the difficulties in incorporating correctly the 
strong collective interparticle interaction. Therefore, for the description of thermal properties of matter in this 
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range of thermodynamic parameters, one could apply phenomenological models in which experimental data 
are used to determine the coefficients in general functional dependencies derived from theoretical 
considerations. The purpose of the present paper is to derive such an EOS from shock-wave data. 

 
I. 3. Approximations 
  

This work is based mainly on classical thermodynamics. To make the analysis of problems with shock-
wave propagation in solids tractable within the framework of thermodynamics we need to make some 
approximations:  

  

•  First, since shock pressures are several hundred times the yield points of the materials involved, 
rigidity effects are neglected and an ordinary fluid type equation of state is assumed to be an adequate 
representation of the material. This implies that nevertheless the shock wave is usually one-dimensional its 
action is considered equivalent to that of hydrostatic pressure with the same magnitude. 

•  Second, thermodynamic equilibrium is assumed for the calculation of states behind the shock front. 
•

u

 A third, basic for shock physics assumption concerns the form of the relation between shock 
velocity  and the velocity of the material flow behind the shock front --- the particle velocity . The 

relation  is the shock Hugoniot in kinematic form and it is assumed to be linear in a range of particle 
velocities where no phase changes or chemical reactions occur [2,3]. It has the form 

su
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)pu
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The intercept corresponds to the velocity of an infinitesimal pressure pulse, or the bulk sound speed, 
 at . Since the slope is linearly related to the pressure derivative of the adiabatic 

bulk modulus, , a linear  Hugoniot then reflects a nearly linear dependence of  on 
pressure. 
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We shall also employ:  
  
•  the Debye model for the specific heats [4] 
•  the Mie-Grüneisen equation which connects two points lying on an equilibrium thermodynamic 

surface described by an equation of state [3] 
•  Grüneisen's hypothesis that the thermodynamic functions of a solid may be expressed as a 

superposition of terms appropriate to various physical interactions [5]:  
 

(2) ),,()(=),,()(=),,()(= TVEVEETVPVPPTVFVFF vibcvibcvibc +++  
  

 where we have restricted our considerations to the contribution of the cold components and the lattice 
vibrations [6,7].  

 

Using the definition of the Grüneisen parameter VEPV )/( ∂∂≡γ  we assume that the parameter-to-

volume ratio is constant and temperature independent: .= const/=/ 00 VV γγ  Experimental work on a 
number of materials, as well as theoretical considerations, indicate this to be an adequate approximation 
[8,9]. The specific heat at constant volume  which also appears in the model is taken constant. This holds 
for most of the solids above the Debye temperature. 

vC

The approximations, stated above, are universally accepted and widely used in solid state physics 
and in shock physics. No  ad hoc assumptions are made in this paper. 

Therefore the objective of the work presented herein is to obtain a complete EOS for solids from 
shock-wave data using the Debye -- Mie-Grüneisen model and the shock Hugoniot as a reference curve, and 
to establish the thermodynamic properties of a system with such an EOS. 

 
II. General formulation 

 

A thermodynamically complete EOS is defined by one of the thermodynamic potentials expressed as a 
function of its characteristic variables. In the case of the Helmholtz free energy  we have  F
(3)   ).,(= TVFF

 

It is clear that  F depends on the microscopic structure of the solid under consideration, which would 
vary as a function of volume and temperature. At different temperatures and densities, the corresponding 
region of matter will be dominated by different interactions. In view of the above, we may write the free 
energy as a superposition of terms appropriate to various physical interactions (Grüneisen's assumption [5])  
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(4)  ).,(),()(=),( TVFTVFVFTVF evibc ++
  

Here  F c  is the configurational free energy at 0 K.  corresponds to the contribution of the zero and 

thermal vibrations of the ions of the crystal lattice.  is the conduction electrons thermal excitations 

contribution. It manifests itself at temperatures ≥  10   K and pressures  10   GPa [1]. At lower 
temperatures and pressures it may be neglected and Eq.

vibF

eF
4 ≥ 2

(4) takes the form  
 

(5)   ),,()()(=),( 0 TVFVFVFTVF lTc ++
 

 where  is the quantum zero-degree contribution. It is a function of volume only like the configurational 

term.  is the thermal lattice contribution. 
0F

lTF
From the relation  and the fundamental thermodynamic identity TSEF −= STVPE dd=d +−  it 

follows that at   KT 0=
 

(6) .d/d=d/d=a= VEVFPndEF ccccc −−   
 

The specific form of the second of Eqs.(6) is derived from the Mie--Grüneisen equation using the 
shock Hugoniot as a reference curve in a paper which is also presented at this conference. 

The calculation of Helmholtz free energy components  and  will be performed within 
the framework of the Debye model for the specific heats. 

)(0 VF ),( TVFlT

 
III. Contribution of the quantum zero Kelvin and lattice thermal vibrations to the EOS 
 

In accordance with the quasiharmonic approximation the vibrational energy levels of a crystal lattice 
with  N atoms may be treated as the energy levels of a system of 3 N independent linear harmonic 
oscillators. For the logarithm of the partition function of such a system we can write  

 

(7) 
( )
( ) ,/exp1

/2expln=ln=ln
3

1=

3

1= kTh
kThzZ

i

i
N

i
i

N

i ν
ν
−−

−∑∑   

 

 where  z i  is the partition function of the  i-th oscillator. 
In the Debye model [4] the crystal lattice is replaced by an isotropic elastic medium with a continuous 
dispersion law function. Further it is assumed that the magnitude of frequency in such a system does not 
exceed a certain boundary value, the Debye frequency Dν  , chosen so that the number of the independent 
lattice oscillations is equal to the total number 3 N of the lattice degrees of freedom. It follows from this 
approximation that we can replace the summation in Eq.(7) by integration. Let us omit the index  i of the 
oscillations. Then 
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is ln z for all oscillators in the frequency range between ν  and ν + dν . The number of these oscillators is 
equal to  g(ν  )dν , where  
 

(8)   32/9=)( DNg ννν
 

 is the density of distribution of oscillators among frequencies [4]. We introduce the Debye temperature 
kh DD /= νθ , which depends on volume and is specific for each substance, and the new integration variable 

kThx /= ν . Then Eq.(7) takes the form  
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Integration by parts of Eq.(9) gives  
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The last equation can be written in a more compact form if we introduce the function  
 

,
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which is known as the Debye function and Tz D/=θ . Then the logarithm of the partition function takes the 
form  

(10) ( ) ( )[ ] ( ).//exp1ln3/
8
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From Eq.(10) and the thermodynamic identities  
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we can derive expressions for the specific free and internal energy, the pressure and the specific heat:  

( )[ ]{ },)/(/exp1ln3
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where (9/8) Nk Dθ  is the contribution of the  quantum zero oscillations in terms of the Debye model, and  

is the derivative of  D with respect to 

'D
/Dθ  T. 

In order to derive  P  it is necessary to compute the volume derivative of vib Zln . The partition function 
does not depend explicitly on volume but through the dependence of the energy levels on it. It is not possible 
to obtain this relation from first principles. This imposes the use of various approximations. In the case of a 
solid the volume dependence of the energy levels is reduced to volume dependence of the lattice 
frequencies. This relation cannot be obtained from first principles as well. According to Grüneisen  
(11) ),1,2,...,3=(=ln/ln NjVdd j γν −   

where jν  (V) are lattice frequencies, and γ  is a positive quantity, one and the same for all the 3 N normal 
modes of the crystal lattice. It is assumed that these frequencies, and hence, γ , do not depend on 
temperature, but on volume only. This is sometimes referred to as the  quasiharmonic approximation. 

Equation (11) is the statistical definition of the Grüneisen parameter. It holds for any frequency, hence 
it may be written for the Debye frequency Dν  

γν −=ln/ln Vdd D  

and since Dν  and Dθ  are proportional, it follows  

./=/lno=ln/ln VdVdrVdd DD γθγθ −−  

Accordingly, we obtain for  P  vib

( )[ ] ( )[ ] )/(/3/
8
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 or  
[ ] ,)/(= vibvib EVVP γ  

 which in terms of the assumed approximation .=/=/ 00 constVV γγ  takes the form  

 .)/(= 00 vibvib EVP γ  
Now, using Eq. (5) and its dependencies we can assemble the complete equation of state. It has the form 
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For the internal energy we can write 
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This equation is often called the caloric EOS. 
Once we know Eq.(12) we can derive all the thermodynamic properties of the system under 

consideration. 
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